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Everybody understands that an organism is more than the sum 
of its parts. Biology offers endless examples of how complex 
functions ‘emerge’ from the organization of simple parts: we 

could not even begin to describe and understand the behavior of 
living organisms, not to mention their psychology, if we did not 
refer to emergent levels of organization and function1,2. Yet almost 
everybody also seems to believe that, causally, only the elementary 
constituents matter3. This intuitive belief in ‘causal reductionism’ is 
based on reasoning that seems straightforward and unassailable: if 
we know what causes each element of a system to do what it does 
individually, we know all we need to know to predict the system’s 
behavior as a whole, so there is no room for additional causes to 
do anything. To illustrate with a neural example, suppose neu-
rons A and B happen to fire. If we establish the cause of A firing  
(a ‘first-order’ occurrence) and that of B firing (another ‘first-order’ 
occurrence), why would we bother to establish the cause of A and B 
firing together (a ‘second-order’ occurrence)? Obviously, what hap-
pened to A and B separately necessarily determines what happened 
to A and B together4. Causally, then, an organism is nothing more 
than a pack of unit-level mechanisms: if we figure out ‘what causes 
what’ at the most elementary level of organization of a system, we do 
not need to worry about any further causes. As Francis Crick5 put 
it, ‘You, your joys and your sorrows, your memories and your ambi-
tions, your sense of identity and free will, are in fact no more than 
the behaviour of a vast assembly of nerve cells and their associated 
molecules…You’re nothing but a pack of neurons5.’

The adequacy of reductionist approaches to understand the 
brain and its relation to behavior has been questioned repeatedly 
(Box 1). However, when it comes to accounting for actual causes 
and effects (‘what caused what?’), reductionism prevails. We think 
that this deep-seated, widespread intuition of causal reductionism is 
fundamentally wrong. The main reason is that reductionism fails to 
acknowledge the existence of composite mechanisms that are irre-
ducible to their elementary constituents. And if these mechanisms 
exist, there must be a cause for what they do. As we will see, being 
blind to the existence of composite mechanisms, reductionism inev-
itably misses causes and effects that clearly play a role in biology and 
elsewhere. At heart, the problem with reductionist intuitions is that 
they rely on an implicit, unexamined notion of causation, which 
leads to the conflation of causation with prediction (Box 1). Indeed, 
once the state of each individual neuron is accounted for, there is 
nothing left to predict, but, as we will see, there can be plenty left to 
be caused. If we characterize causation explicitly and operationally, 

the existence of irreducible high-order mechanisms with specific 
causes and effects becomes as obvious as that of first-order ones, 
revealing causal structures that are as organized as organisms are6–8. 
(Throughout, the ‘order’ of a mechanism refers to its number of 
elementary constituents.)

Here we wish to illustrate this point with an example that  
demonstrates, as simply as possible, why causal reductionism is 
incoherent and how causal structures can be analyzed.

A simple example: causal reductionism
The example relies on simple, simulated organisms termed ‘frogs’ 
that have adapted to a world inhabited by three kinds of bugs: 
left-bugs, right-bugs and super-bugs. Left-bugs and right-bugs are 
small and are preyed upon by frogs as food. Super-bugs are large, 
being composed of a left-bug and a right-bug fused by the tail, and 
prey upon frogs. We will consider three species of evolved frogs: F3, 
F2 and F1. Studying the behavior of some of these frogs shows that 
they have adapted to this world as follows (Fig. 1): they typically 
jump forward and left when they detect a left-bug, jump forward 
and right when they detect a right-bug and jump ‘over’ to escape any 
super-bug they detect.

To provide a mechanistic account of the frogs’ behavior, we must 
open their head and study their brain as neuroscientists would do9.

F3 frogs. In one species of frogs, F3, we find three sensors (SL, SC 
and SR), three central neurons (CL, CC and CR) and two motors (ML 
and MR; Fig. 2). By stimulating and recording inputs and outputs of 
the central neurons, we discover that each of them fires preferen-
tially for a different type of bug, which leads to different actions (the 
neurons’ responses are probabilistic, which allows for more flexibil-
ity in the frog’s behavior). CL is a left-bug detector on the input side 
and a jump-left command neuron on the output side: it fires when 
SL turns ON while SC remains OFF, and when it fires, it triggers ML 
with high probability (specifically, the probability that ML fires if 
CLCC = 10 is 0.8). CR is a right-bug detector and a jump-right com-
mand neuron: it fires when SR turns ON with SC OFF, and when it 
fires, it triggers MR with high probability (like in the case of ML, 
the probability that MR fires if CCCR = 01 is 0.8). Finally, CC is a 
super-bug detector: it fires when SL is ON, SC is OFF and SR is ON, 
and when it fires, it triggers both ML and MR (probability (p) = 1), 
making the frog jump over the super-bug (specifically, the firing 
of CC increases the probability of the frog to jump ‘over’ from 0.8, 
when CLCCCR = 101, to 1, when CLCCCR = 111).

Causal reductionism and causal structures
Matteo Grasso1,2, Larissa Albantakis   1,2, Jonathan P. Lang   1 and Giulio Tononi   1 ✉

Causal reductionism is the widespread assumption that there is no room for additional causes once we have accounted for all 
elementary mechanisms within a system. Due to its intuitive appeal, causal reductionism is prevalent in neuroscience: once all 
neurons have been caused to fire or not to fire, it seems that causally there is nothing left to be accounted for. Here, we argue 
that these reductionist intuitions are based on an implicit, unexamined notion of causation that conflates causation with predic-
tion. By means of a simple model organism, we demonstrate that causal reductionism cannot provide a complete and coherent 
account of ‘what caused what’. To that end, we outline an explicit, operational approach to analyzing causal structures.

NATure NeurosCieNCe | VOL 24 | OcTOber 2021 | 1348–1355 | www.nature.com/natureneuroscience1348

mailto:gtononi@wisc.edu
http://orcid.org/0000-0003-1000-9917
http://orcid.org/0000-0001-8071-1344
http://orcid.org/0000-0002-3892-4087
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-021-00911-8&domain=pdf
http://www.nature.com/natureneuroscience


PersPectiveNaTure NeurosCieNCe

In this simple case, we seem to have a straightforward, mechanis-
tic account of the frog’s behavior. Each central neuron is a first-order 
mechanism that functions as a specialized bug detector and trig-
gers the appropriate motor response. Moreover, for each neuron, 
we can tell what caused it to fire (or not) and what effect its firing 
had. Finally, this first-order causal account seems complete: once 
we have accounted for the cause of each individual neuron firing 
(or not), there is nothing else that can or needs to be caused. Indeed, 
once we can predict what each neuron will do, we can predict what 

the frog will do. Causal reductionism thus seems to work just fine, 
strengthening the intuition that, as long as we can figure out the 
causes and effects of each individual neuron, we can have a com-
plete causal account and a perfect prediction.

F2 frogs. But now consider a second species of frog, F2,  
whose behavior is the same as that of F3 frogs, but which turns 
out to have a slightly different brain (Fig. 2). In fact, F2 frogs have 
a more efficient brain with just two central neurons (CL and CR), 

Box 1 | Causation, prediction and supervenience

‘By choosing to ignore the science to pursue his own selfish goals, 
he caused a lot of pain to a lot of people.’ In this and similar exam-
ples, explaining human behavior and cognition calls for high-level 
causal language—reductionist descriptions simply will not do2. 
This is not just a matter of practicality. Many brain functions are 
multiply realizable (there are many ways to implement the same 
function21–24) and degenerate (there are many ways to cause the 
same effect25,26), as confirmed by studies showing functional 
similarities across individuals27 and species28. Even in relatively 
simple systems, different neural circuits or circuit states produce 
similar outputs, such as rhythmic oscillations and resulting mo-
tor patterns, both across and within individuals29. Conversely, 
the individual constituents of neural networks demonstrate 
multi-functionality and context dependency25,26,30. Indeed, the 
need for functional31–34, computational1,2,35 and dynamical de-
scriptions26,36,37 of brain processes is now widely recognized. An 
account based on micro-units, such as individual neurons, taken 
one by one (first-order), might in principle predict what happens, 
but will not explain why or allow for meaningful inferences. Nev-
ertheless, the necessity of macro-, high-order descriptions and 
their use in ‘causal’ explanations does not dispel the reductionist 
intuition that only micro-, first-order causes truly matter. It would 
still seem that, once the state of every neuron in a neural network 
is accounted for in causal terms, there is nothing else left to be 
caused3,4. This widely shared reductionist intuition about causa-
tion seems to be based, ultimately, on two related notions: predic-
tion and supervenience.

Causation and prediction. Prediction has pride of place in sci-
ence, especially in physics. In fact, the success of dynamical laws 
at predicting the temporal evolution of physical systems might 
seem to make notions of causation unnecessary38, in line with 
long-standing philosophical skepticism39–41. However, the need 
to distinguish true causation from mere correlation also has a 
long history19,42,43 and neuroscientists are regularly warned not to 
conflate the two. The main reason is that, in biology, we cannot 
rely on general laws to predict the behavior of biological systems 
constituted of many heterogeneous parts. To that end, we need 
to uncover the specific mechanisms governing their interactions 
through systematic observations and manipulations.

Within neuroscience, causal methods have become an essen-
tial part of research, at multiple levels. Electrical stimulation and 
recording of neural circuits have long been used in neurophysi-
ology44, complemented now by refined tools such as optogenetic 
manipulations of specific cell types and even individual cells or 
synapses45. At the system level, transcranial magnetic stimulation 
and high-density electroencephalogram recordings have proved 
useful in evaluating the brain’s effective connectivity46. Network 
analysis methods such as dynamic causal modeling47 make explicit 
reference to causal models based on known anatomical pathways 
to obtain better inferences about multiregional interactions48.

Even so, the notion still lingers that what ultimately matters for 
science is the ability to predict. In fact, an accurate causal model 
is a powerful tool to predict the state of individual units, such as 
neurons in a network, from the state of their inputs. If we do so for 
every unit, no extra work is needed to predict the state of the entire 
network and any subsets of interest. In other words, first-order 
prediction is all we need for high-order prediction. This reinforces 
the reductionist intuition that there are no high-order causes, 
because they would not add anything to first-order predictions.

The problem, however, is that prediction and causation are 
ultimately two different notions, and can easily be dissociated, as 
illustrated in Box 2. In the context of a neural network, predic-
tion can be understood as our ability to derive the future state of 
a system’s units based on knowledge of their past state and of the 
system’s mechanisms (‘horizontal determination’). Instead, causa-
tion should be understood as the ability of a mechanism to ‘take’ 
or ‘make’ a difference, as demonstrated through observation and 
manipulation. Interventionist, counterfactual notions of causation 
have been developed formally and can be applied to any system 
that can be described by a causal Bayesian network7,19.

Causation and supervenience. The other leg on which the reduc-
tionist intuition rests is the notion of supervenience49—the 
assumption that once the state of all micro-, first-order units is 
fixed (at a given time step), the state of all macro-, high-order 
subsets is fixed, too (at the same time step). If micro-, first-order 
causes are sufficient to fix the state of all micro-, first-order units, 
and if these in turn are sufficient to fix the state of macro-units and 
high-order subsets in accordance with supervenience, then, goes 
the intuition, the latter cannot provide any additional causation50.

Once again, the problem with this reasoning is that super-
venience is different from causation51. Supervenience can be 
understood as our ability to derive properties of macro-units or 
high-order subsets of units from those of micro-, first-order units 
(‘vertical determination’). As already stated, causation should be 
understood as the ability to ‘make’ (or ‘take’) a difference. Whether 
a high-order mechanism can make (or take) a difference in a way 
that is irreducible to the difference made (or taken) by its parts 
should be assessed through causal structure analysis7 rather than 
ruled out based on unexamined intuitions. As illustrated in the 
main text, the fact that the state of high-order subsets is fixed once 
that of the first-order units is fixed, is orthogonal to the question 
of whether they have irreducible causes or effects. In other words, 
causation can be compositional, as long as it is irreducible, even 
though compositional mechanisms supervene on first-order ones. 
As mentioned in Box 3, a similar demonstration of causal irreduc-
ibility can be provided for macro-units, such as groups of neu-
rons or mini-columns, with respect to macro-causes and effects.  
In sum, causation is different from prediction and supervenience, 
it addresses a separate question (‘what caused what?’), and requires 
its own formal and operational characterization7,19.
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which provides them with some evolutionary advantage10. CL is still 
a left-bug detector that triggers a left jump, and CR is still a right-bug 
detector that triggers a right jump. However, F2 frogs have man-
aged to get rid of CC, the super-bug detector, while preserving the 
same super-bug detection and avoidance functions: what happens is 
that a super-bug triggers the firing of both CL and CR, which in turn  
trigger the firing of both ML and MR, making the frog jump over 
with p = 1.

There is surely no mystery as to how the brain of the F2 frog 
works (a typical explanation would be that CL and CR together pro-
vide a ‘distributed representation’ of a super-bug). But how does 
causal reductionism treat F2 frogs? As with F3 frogs, the firing of 
neuron CL is caused by a left-bug and that of CR by a right-bug. 
When a super-bug appears, the input of CL, corresponding to the 
left side of the super-bug, causes it to fire, just as it would if it were 
detecting a left-bug. Similarly, the input of CR, corresponding to the 
right side of the super-bug, causes it to fire as if it were detecting a 
right-bug. Knowing what CL and CR do, we can also predict with 
perfect accuracy that ML and MR will be triggered, making the frog 
jump over, just as we can predict the behavior of the F3 frog based 
on CL, CC and CR.

However, if we follow causal reductionism, there is a crucial dif-
ference in causal terms between F2 and F3 frogs: the super-bug as 
such never shows up as a cause in F2 frogs, because both CL and CR 
have already been caused by their separate inputs, and reduction-
ism does not consider high-order mechanisms such as CLCR. This 
is unlike F3 frogs, where the super-bug as a whole was the cause 
of CC firing. Thus, a first-order, reductionist causal account sees 
the super-bug as a cause (mediated by SL, SC and SR) in F3 frogs, 
but excludes it as a cause in F2 frogs. The assumption is that once 
all individual neurons are causally accounted for, there is noth-
ing else left to be caused. This inability to see CLCR in F2 frogs as 
a high-order mechanism—a super-bug detector—and consequently 
to see the super-bug as a cause now seems absurd, because these 
frogs can obviously detect and respond to super-bugs just as well as 
F3 frogs. While causal reductionism provides an irreducible causal 
account for avoiding super-bugs in F3 frogs, the avoidance behavior 

of F2 frogs is instead ‘explained away’. Yet, both F3 and F2 frogs 
have evolved a mechanism to detect and avoid super-bugs. Perhaps 
something is not right, then, with the way causal reductionism  
conceives of causation.

F1 frogs. To drive the point home from a different angle, consider 
yet another species, F1 frogs. These are frogs reduced to their bare 
minimum—essentially ‘half-frogs’ with just two sensors and a single 
central neuron. F1 frogs come in two varieties: left-F1 frogs detect 
left-bugs and jump forward and left to catch them, while right-F1 
frogs do the same for right-bugs. Neither type of F1 frog can detect 
super-bugs, which is bad, but we assume here that as a species they 
manage to survive by sheer numerosity.

Now consider what happens, in mechanistic terms, if by chance 
two F1 frogs, of the left and right variety, find themselves side by 
side in front of a super-bug (Fig. 2; for a detailed description of the 
behavior of F1 frogs, see the figures in Supplementary Note 1). The 
CL neuron in the left-F1 frog will detect a left-bug (corresponding to 
the left side of the super-bug), while the CR neuron in the right-F1 
frog will detect a right-bug (corresponding to the right side of the 
super-bug). Because both ML and MR will be activated, both variet-
ies of F1 frogs will leap sideways and effectively avoid the super-bug.

In this instance, a reductionist account would find the cause of 
CL firing (which in turn triggers ML), the cause of CR firing (trig-
gering MR) and no other cause. In the case of two F1 frogs, then, 
the reductionist account happens to capture everything: there are 
two separate causes leading two separate F1 frogs to a fortuitous 
escape. And it is intuitively obvious that there cannot be any other 
cause, because F1 frogs conspicuously lack anything resembling a 
super-bug detector. The problem is that causal reductionism cannot 
distinguish this case from that of an F2 frog: unlike the two F1 frogs, 
F2 frogs have evolved an efficient, second-order mechanism, CLCR, 
whose activation has a clear cause, the detection of a super-bug, 
and a clear effect, the escape response. In sum, causal reductionism 
is blind to the obvious causal similarity between F3 and F2 frogs, 
both of which possess a super-bug detector—first-order for F3 and 
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second-order for F2. It is also blind to the causal difference between 
F2 frogs, which have evolved a super-bug detector, and the pair of 
F1 frogs, which obviously have not.

The essential point made by these simple examples is this: causal 
reductionism rightly recognizes the importance of causal irreduc-
ibility, but it does so implicitly and intuitively rather than explicitly 
and operationally. As shown by F3 frogs, it is reasonable to assume 
the irreducibility of first-order mechanisms constituted of individ-
ual units, such as the F3 super-bug detector CC. As illustrated by F1 
frogs, it is also reasonable to assume that a high-order mechanism 
is not a mechanism at all if it is fully reducible to two first-order 
mechanisms (for example, CLCR in pairs of F1 frogs). However, this 
implicit, intuitive approach breaks down in F2 frogs: causal reduc-

tionism fails to recognize the super-bug detector CLCR as an irre-
ducible high-order mechanism with a cause in its own right.

When it comes to high-order mechanisms constituted of two 
or more units, then, causal reductionism becomes incoherent 
with respect to irreducibility and ends up missing obvious causes. 
(Similar problems arise for ‘causal holism’, which would exclusively 
consider the dynamics of the system as a whole and ignore causal 
structure, just like causal reductionism11; Box 2.)

Causal structures
How can we move beyond the seemingly straightforward but ulti-
mately incoherent reductionist notion of causation? What is needed, 
we believe, is an explicit and operational method to characterize 

Box 2 | Dissociation between causation and prediction: an example

In the box figure, a shows a schematic ‘neural’ example in which, 
if we recorded the state of neuron B’ (firing or not), we would 
unfailingly predict the ensuing state of neuron C (gray dotted ar-
row). However, an intervention such as optogenetic stimulation 
(indicated by the ‘do-operator’ do(B’ = 1) in b) would reveal that 
changing the state of neuron B’ does not affect the state of unit C, 
which is only affected by perturbations of neuron B. Furthermore, 
a physical partition (for example, severing an anatomical connec-
tion) between B and C would abolish this effect, but one between 
B’ and C would not. In other words, unlike prediction, causation 
must be evaluated by physical interventions (perturbations and 
partitions). A causal model, represented by directed arrows, makes 
explicit the difference between prediction and causation. It also 
enables better predictions when circumstances change. Thus, we 
can predict that C will continue to be affected by A if B’ is inacti-
vated, but not if B is inactivated.

The dissociation between prediction and causation is also 
relevant when it comes to high-order causation of the kind 
described in the main text. In c–e (top row), the same causal 
model is illustrated with different activation functions for neuron 
C (copy, XNOR or AND). As argued above, if we can predict the 
next state of every individual neuron based on the state of its 
inputs (first-order, unit prediction), we also predict higher-order 
states (system prediction). In the example, predicting the state 
of neurons C and C’ individually also predicts the state of the 
set CC’ in all three cases. However, this is not true for causation. 
Causal structure analysis shows that, if C and C’ are copy units (c), 
C = 1 has cause B = 1 and C’ = 1 has cause B’ = 1, but there is no 
irreducible cause for CC’ = 11.

By contrast (d), if C is an XNOR unit (it fires if its inputs are 
equal—00 or 11), then C = 1 has its cause in BB’ = 11, C’ = 1 has 
its cause in B’ = 1, and CC’ = 11 also has an irreducible cause in 
BB’ = 11. This is because CC’ = 11 requires BB’ to have been in 
the specific state 11, while C = 1 could also have been caused by 
BB’ = 00 and C’ = 1 alone only requires B’ to have fired.

If C is an AND unit (e), C also has its cause in BB’ = 11 and C’ 
has its cause in B’ = 1. In this case, however, despite the joint input 
to C from B and B’, CC’ = 11 has no irreducible cause, because CC’ 
does not ‘take a difference’ in BB’ that is not already taken by C.

The example in d also shows that, in general, it is not possible 
to predict the next state of a neuron or set of neurons based 
on the output of each individual input unit, for example, due to 
nonlinear interactions (individual inputs to an XNOR have no 
predictive information about its next state). On the other hand, 
with a causal model, we can achieve ‘holistic’ system prediction 
on the output side (c–e, bottom row): based on the output of  
BB’ as a whole (= 11), we can predict the next state of CC’  
(= 11). In doing so, we also predict the next state of each 
individual unit. However, like unit prediction, system prediction 
does not capture the structure (composition) of effects: BB’ 
has an irreducible effect on C in d and e, but not in c. Thus, 
both unit and system prediction fail to capture the structure 
(composition) of irreducible causes and effects. In summary, to 
demonstrate causation, we need to show that something takes 
or makes a difference, as assessed through perturbations and 
partitions. Unlike prediction, high-order causation must be 
assessed in its own right and does not automatically follow from 
first-order causation.
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Box 3 | Macro and micro: causation at different levels of organization

To understand the workings of biological systems, including 
the brain, we rely on models at multiple grains of description  
(Box 1). For example, we may consider models based on neurons, 
finer grains such as neuronal compartments, down to membrane 
patches, or coarser grains such as mini-columns, macro-columns, 
brain regions, and so on. We may consider their interactions with 
a resolution of a few milliseconds, hundreds of milliseconds or 
seconds. And we may consider neural states at finer or coarser 
spatial-graining, temporal-graining and state-graining, such as 
binary subdivisions into firing or not, or finer subdivisions into 
many discrete levels of firing (a).

Macro-units, macro time steps and macro-states can provide a 
useful way of grouping micro-units, time steps and states to obtain 
a simpler, more essential description of the system’s dynamics52. 
Nevertheless, it is typically assumed, in line with the reductionist 
intuition and the conflation of causation with prediction and 
supervenience (Box 1), that all the causal work is done by the 
micro-units that constitute the system. And indeed, leaving aside 
practical concerns, analyzing a system at a macro-grain cannot 
provide better predictions than analyzing it at the micro-grain. 
Moreover, because the macro-grain supervenes on the micro-grain, 
every macro-property can be derived from micro-properties.

However, it can be shown that, in causal terms, macro can beat 
micro53. To illustrate this, we analyzed a small example system 
constituted of three interacting macro-units (corresponding, say,  

to mini-columns; b; for a full description of this system, see 
Supplementary Note 3). Each of these macro-units is taken as a ‘black 
box’54,55, constituted at the micro level of two input units (X and Y)  
with two possible states {0, 1} each, and one output unit (O) with 
three possible states. The macro-units are self-inhibitory due to 
inhibitory connections from O to X and Y in each black box; all other 
connections are excitatory. Based on the formalism of causal structure 
analysis7, we evaluated the causal strength (α) with which the black 
box A or its output element OA specify their respective cause. We 
compared coarser spatial, temporal and state grains to finer-grained 
characterizations of the same system (c). With respect to spatial grain 
(c1 and c2), the two input units X and Y are coarse-grained into one 
macro-unit (I) with three possible states (corresponding to the sum 
of X and Y). At this coarser spatial grain, the output unit OA specifies 
its cause, the macro-unit IA = 2, with higher causal strength (α) than 
OA specifies its micro inputs (XAYA = 11) at the micro level. With 
respect to temporal grain (c3 and c4), the black box A with three 
possible states per element, evaluated within the macro system ABC, 
specifies its cause (BC = 22) at the macro time step (corresponding to 
two micro time steps), but not the at the micro time step (α = 0). For 
the state grain, c5 and c6 show that the black boxes A, B and C can 
also be considered as binary rather than ternary units (for example, 
with states {0,1}s grouped into macro state {0}S and state {2}s into 
macro state {1}S). In this case, the binary unit A = 1 specifies its cause 
BC = 11 with higher causal strength than the ternary macro-units.
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causal structures. This is possible through a complete and coherent 
causal analysis, grounded in a mechanistic model of a system, that 
relies on explicit causal principles. These principles—realization, 
composition, information, integration and exclusion—are based 
on the postulates of cause–effect power of integrated information 
theory (IIT)12,13.

Among the principles informing such causal analysis, composi-
tion, integration and exclusion are especially important for our pur-
poses. The composition principle says that causes and effects are 
structured: a mechanism can be constituted of any number of units 
in a state: a first-order mechanism may be constituted of a single 
neuron that fired, with its own cause and effect; a second-order 
mechanism may be constituted by a pair of neurons, one that fired 
and one that did not, again with its own cause and effect, and so 
on. Causes and effects of separate mechanisms are causally related 
whenever they overlap over some units14. The integration principle 
says that mechanisms must be irreducible: a mechanism in a state has 
an actual cause if partitioning it into two or more sub-mechanisms 
in any way makes the cause less probable (same on the effect side; 
Fig. 3). The irreducibility measure, α, quantifies how much of a dif-
ference a partition makes to the probabilities of causes and effects 
(Fig. 3) and is assessed by considering the minimum partition of 
the mechanism7. The exclusion principle says that every irreducible 
mechanism has just one cause and one effect—the one that is maxi-
mally irreducible (having the highest α value). Causal reduction-
ism also endorses causal exclusion: if something is fully accounted 
for causally, then it cannot have further causes. However, the way 
exclusion is conceived in causal reductionism typically rules out 
high-order mechanisms, as we saw with F2 frogs. Instead, the causal 
analysis used here endorses high-order mechanisms (composition), 

as long as they are irreducible to sub-mechanisms (integration). In 
other words, irreducible mechanisms do not exclude each other, but 
causes and effects do: each mechanism must have just one cause and 
one effect (exclusion).

A complete causal analysis yields a ‘causal structure’: the set of 
all causes, effects and causal relations specified by the irreducible 
mechanisms constituted by a set of units in a particular state7. Such 
a complete analysis, which we call ‘causal structure analysis’7–11, is 
formulated in probabilistic terms15,16 and requires perturbing sub-
sets of elements in every possible way, observing their effects on 
other system elements17,18, and establishing the consequences of 
partitions among the elements. This analysis is applicable to any 
system that can be described by a causal Bayesian network19 with 
a discrete number of nodes and finite, discrete states (not restricted 
to binary variables7,20). Here we apply causal structure analysis at 
a given level of organization. As illustrated in Box 3, the proposed 
causal formalism also applies across the various levels of organiza-
tion of a system.

How does causal structure analysis fare with the three frog 
examples? The fully unfolded causal structure of these three 
examples is presented in Supplementary Note 2. For the present  
purposes, the main point is the following: causal structure analysis  
establishes that both F3 and F2 frogs have irreducible mecha-
nisms for the detection and avoidance of super-bugs, with corres-
ponding causes and effects, whereas pairs of F1 frogs do not.

Specifically, with F3 frogs (Fig. 3a), the analysis identifies three 
irreducible, first-order mechanisms (CL, CC and CR). For CC = 1, 
the cause is the sensor state SLSCSR = 101, corresponding to the 
super-bug. Similarly, the effect is the motor state MLMR = 11, corre-
sponding to jumping ‘over’. In this case, then, the cause and effect of 
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>
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Fig. 3 | irreducibility analysis for selected mechanisms. For each type of frog, the irreducibility analysis is illustrated for the mechanism intuitively playing 
the role of the ‘super-bug detector’: cc in F3 frogs (a), cLcr in F2 frogs (b) and also cLcr in pairs of F1 frogs (c).

In summary, causal structure analysis reveals that, in the 
maximally activated state: (i) a stronger cause can be found at the 
grain of macro-units, compared to micro-units (cause (1) > (2)); 
(ii) a macro time step can also result in higher causal strength 
compared to micro-intervals (cause of (3) > (4)); and (iii) reducing 
the number of states can increase causal strength under certain 

conditions (cause of (5) > (6)). A quantitative, operational approach 
to causal analysis that can be applied across spatiotemporal scales 
can thus identify those macro levels that are particularly relevant 
for our understanding of a system. By contrast, a reductionist 
account cannot explain why some spatiotemporal scales seem 
causally more relevant than others.

Box 3 | Macro and micro: causation at different levels of organization (continued)
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CC (and the other two first-order mechanisms) turn out just as the 
causal reductionist would expect. (Note that testing for the irreduc-
ibility of a first-order mechanism, such as CC in F3, requires parti-
tioning all its input and output connections. Partitioning a single 
element thus amounts to ‘disintegrating it,’ which captures the intu-
ition that a first-order mechanism cannot be reduced further.)

Not so, however, with frog F2 (Fig. 3b). In this case, causal 
structure analysis reveals that any partition of CLCR into indepen-
dent mechanisms makes a difference (α > 0). Therefore, CL and CR 
together constitute an irreducible second-order mechanism CLCR. 
As in F3 frogs, the cause of CLCR = 11 turns out to be the sensor 
state SLSCSR = 101 (the super-bug), and the effect is the motor 
state MLMR = 11 (jumping ‘over’). Unlike causal reductionism, 
then, causal structure analysis identifies CLCR as a second-order 
mechanism that detects super-bugs and triggers the escape action, 
which fulfills the same causal requirement of irreducibility as CC 
in F3 frogs (in this view, a ‘distributed representation’ only mat-
ters causally if it corresponds to a high-order mechanism that 
specifies a cause and an effect). Causal structure analysis also 
identifies causal relations among overlapping causes and effects of 
second-order and first-order mechanisms, capturing the fact that a 
super-bug is composed of a left-bug and right-bug bound together 
(Supplementary Note 2).

Finally, in the case of the two F1 frogs, causal structure analy-
sis easily reveals that CL in the left-F1 frog and CR in the right-F1 
frog do not constitute a second-order mechanism because they are 
causally independent (Fig. 3c): a partition between CL and CR does 
not make any difference (α = 0), consistent with the absence of any 
super-bug detection and escape mechanism—not to mention of any 
full frog.

Conclusion
In neuroscience, as elsewhere, causal reductionism seems at first 
both intuitive and inescapable. Once all neurons have been caused 
to fire or not to fire, there seems to be no room for further causa-
tion. Moreover, there would seem to be no need for it: if we know 
what causes each neuron to fire and the current state of the brain, 
we can predict what the brain will do next without fail (leaving aside 
indeterminism). And yet, as we have seen using a simple example 
that can be fully characterized in mechanistic terms, causal reduc-
tionism misses out on causes and effects that clearly are impor-
tant, both conceptually and biologically. For all its intuitive appeal, 
reductionism lacks a principled, explicit approach to analyzing 
causal structures. It assumes that first-order mechanisms are caus-
ally irreducible but fails to recognize that higher-order mechanisms 
can be just as irreducible, having their own irreducible cause and 
effect11. In doing so, reductionism conflates causation with pre-
diction (Boxes 1 and 2). Knowledge of first-order mechanisms 
is indeed enough to predict everything about the dynamics of a  
system. But only the analysis of causal structures can provide a 
coherent account of ‘what caused what’.

Code availability
The code used for the simulations can be accessed freely at https://
github.com/wmayner/pyphi/blob/develop/pyphi/examples.py/.
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